
A TRIDENT SCHOLAR
PROJECT REPORT

NO. 251

**Speech Coding and Phoneme Classification
Using a Back-propagation Neural Network"

UNITED STATES NAVAL ACADEMY

ANNAPOUS, MARYLAND

This document has been approved for public
xelease and sale; its distribution is unliimted.

USNA-1531-2

REPORT DOCUMENTATION PAGE Form Approved
0MB No. 074-0188

Public reporting burden for this collection of infonnation is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of Infotmation. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Papenivork Reduction Project (0704-0188), Washington, DC
20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
7 May 1997

3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE
Speech coding and phoneme classification using a back-
propagation neural network

5. FUNDING NUMBERS

6. AUTHOR(S)
Brett A. St. George

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Naval Academy
Annapolis, MD

8. PERFORMING ORGANIZATION REPORT NUMBER

USNA Trident Scholar project report
no. 251 (1997)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Accepted by the U.S. Trident Scholar Committee

12a. DISTRIBUTION/AVAILABILITY STATEMENT
This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT: Speech is a natural, unspecialized method of connnunication that is perhaps Idle tiltimate machine
interface. Previous atten^ts to provide such an interface, however, have been limited to pre-defined vocabularies of
an art^ificial syntax. This paper presents a method for speaker-dependent speech ident:ification that uses a back-
propagation neural network to determine the phonemes present within a voice signal. The vocal tiract changes slowly in
time and can be modeled using the pitch and format frequencies of the voice. These frequencies relate the position of
the vocal tract to specific pronunciatiions and are obtiained by using a homomorphic filtering process that separates
the vocal tract' s impulse response from the excitation source. The frequency representatu.on of t:his response is
concatenated wilih the excitatn.on containing the pitch frequency and applied to the input layer of the neural network.
From tiiis informat:ion, the network selects combinatu.ons of features that identify the phonemes which are present.
This network was trained on a set of speaker dependent phonemes, and now phonetically classifies new speech input.
This classification scheme could be used to tiranslate linguistic messages into machine code witii a very high datia
rate. This benefit would allow for real-time interaction wit:h machines with no specialized tiraining. Implications
could be as simple as providing quick voice to text processing or as diverse as ii^lementiing a conlrrol system with
response time tied to specified voice patterns.

14. SUBJECT TERMS
speech coding, cepstral analysis, homomorphic
deconvolution, back-propagation neural network, phoneme

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500
(Rev.2-89)

Standard Form 298
Prescribed by ANSI Std. Z39-18
298-102

U.S.N.A. — Trident Scholar project report; no. 251 (1997)

"Speech Coding and Phoneme Classification
Using a Back-propagation Neural Network"

by

Midshipman Brett A. St. George, Class of 1997
United States Naval Academy

Annapolis, Maryland

VGIXXT S^ J^^JuM.^
(signature)

Certification of Advisor Approval

Instructor Ellen C. Wooten
Electrical Engineering Department

(signature)

(date)

Assistant Professor Louiza Sellami
Electrical Engineering Department

ocxwo^9- vLo^ (jV-

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Chair, Trident Scholar Committee

(signature)

(datef

USNA-1531-2

Abstract

Speech is a natural, unspecialized method of communication that is perhaps the

ultimate machine interface. Previous attempts to provide such an interface, however,

have been limited to pre-defined vocabularies of an artificial syntax. This paper presents

a method for speaker-dependent speech identification that uses a back-propagation neural

network to determine the phonemes present within a voice signal.

The vocal tract changes slowly in time and can be modeled using the pitch and

formant fi-equencies of the voice. These fi-equencies relate the position of the vocal tract

to specific pronimciations and are obtained by using a homomorphic filtering process that

separates the vocal tract's impulse response fi-om the excitation source. The fi-equency

representation of this response is concatenated with the excitation containing the pitch

frequency and applied to the input layer of the neural network. From this information,

the network selects combinations of features that identify the phonemes which are

present. This network was trained on a set of speaker dependent phonemes, and now

phonetically classifies new speech input.

This classification scheme could be used to translate linguistic messages into machine

code with a very high data rate. This benefit would allow for real-time interaction with

machines with no specialized training. Applications could be as simple as providing

quick voice to text processing or as diverse as implementing a control system with

response time tied to specified voice patterns.

Keywords: speech coding, cepstral analysis, homomorphic deconvolution, back-

propagation neural network, phoneme.

Acknowledgments

I would like to thank God for giving me the patience, diligence, guidance, and

reasoning to accomplish all that I have. I also offer my thanks to everyone whose

support and encouragement have been my crutch throughout this project. Mom, Dad,

and Holly, thanks for always bemg my sounding board. You didn't always understand

my problems, but you never failed to see me through them. Amanda, your contribution

is a book unto itself. Thanks for always being there. LT Reppar, if it were not for your

support, I would have never had the opportunity to be a part of this program. Daphi,

your countless hours spent fixing my computer are not forgotten. And lastly, my deepest

gratitude goes to Dr. Antal A. Sarkady and to my advisors Dr. Ellen C. Wooten and Dr.

Louiza Sellami.

Contents

Chapter I: Introduction 6
1. Speech Coding and Neural Networks............. ^ 6

2. Project Description.. 7

3. Contributions 8

4. Overview 10

Chapter II: Speech Coding and Neural Processing 12

1. Speech Coding 12

2. Neural Network Computing 17
(a) Introduction 17
(b) Network Training 19

3. Overview 23

Chapter III: Phoneme Recognition and Simulation Results .—.....24
1. MATLAB and NeuralWorks Simulation 24

2. Network Construction and Local Optimization 29
(a) Input Data 29
(b) Number of Processing Elements...................................... 31
(c) Number of Hidden Layers.................... .. 32
(d) Connections Between Processing Elements and Layers................................ 32
(e) Learning Coefficient......................................—... 34
(f) Network Ranges/Gain... 35
(g) Momentum 36

3. Best Network 36

4. Overview and Concluding Remarks.. 39

Chapter IV: Conclusion 40

1. Summary ..41

2. Future Work. 42

3. Future Applications..........................—.....................................—..................... 43

References 44

Appendix: MATLAB Programs 45

Figures

Fig. 1 Flowchart of speech coding and classification algorithm 8

Fig. 2 Formant estimation for phonemes (a) e and (b) t 16

Fig. 3 Model for neural processing element 18

Fig. 4 Graph showing an arbitrary global error function 21

Fig. 5 Voice data for the phoneme "e" as in "bet" 25

Fig. 6 Time slice of the phoneme "e" with Hamming window applied 26

Fig. 7 Amplitude spectrum for 30 msec time slice of phoneme "e" 26

Fig. 8 Cepstrum for the phoneme "e" 26

Fig. 9 Formant estimation for the phoneme "e" 26

Fig. 10 Network Input 27

Fig. 11 NeuralWorks display of a back-propagation neural network 28

Fig. 12 Phoneme classification rate for newly introduced test data 37

Fig. 13 Classification results for the word "me" 38

Chapter I: Introduction

speech coding and neural network processing are powerful tools that are empowering

us to teach our computers to talk as well as teach them to Hsten to us speak. These tools

have created a new horizon of opportunity that is allowing researchers to apply voice

processing to many new areas of study. Some possible applications include conversing

with computers over the telephone without the need of a modem, carrying a hand-held

translator while touring a foreign coimtry, or preparing a paper without the need of a

keyboard. Speech-integrated circuitry has a wide variety of uses that are being

incorporated into simple devices such as calculators, pocket dictionaries, and toys. Of

the many benefits that voice processing provides, one of the most distinct advantages is

that it allows for real-time interaction with machines with no specialized training. This

advantage is creating a new method of computer interface that is prompting intense

interest in the area of voice processing.

This paper continues to build on current voice processing research by developing a

phonetic classification scheme that relies on speech coding and back-propagation neural

network processing. In the first part of this chapter, speech coding is defined and an

explanation is provided to describe why neural network processing provides a method

which is very well suited for speech classification. Following this discussion, a

description of the project is flowcharted and the contributions firom this investigation are

outlined.

1. Speech Coding and Neural Networks

Speech coding is an area of signal processing that involves extracting information

from an analog, time-based signal, and improving the efficiency of speech transmission.

classification or recognition [1, p. 143], The coding process incorporates several

techniques for extracting information from a speech signal that is not apparent in the

analog time domain representation of the unprocessed signal. This information reveals

certain acoustic variables that describe the physical nature of the vocal tract for the

pronimciation of various sounds. This precept has led to an intense study of phonetics

using signal processing and has created a strong mathematical foundation for providing

voice activated systems. Unfortunately, such systems have been confined to a specific

user and have been designed to respond only to pre-defined vocabularies that are often

artificial in syntax. Because of these limiting factors, neural networks have been

introduced as a voice processing tool that will hopefully allow speech recognition

systems to respond to more general inputs. Neural networks have the advantage of being

adept at pattern recognition tasks and are often able to outperform both traditional

statistical and expert systems [2, p. 8]. For this reason, a neural network recognition

system was chosen for the phonetic classification scheme.

Of the many different neural network algorithms that provide some method of

classification, a back-propagation neural network was specifically chosen because of its

ability to match large amoxmts of input information simultaneously, and then generate

categorical or generalized output [2, p. 8]. In the classification scheme presented in this

paper, the output of the network corresponds to the phonetic alphabet as defined by 40

phonemes that were selectively chosen to represent the speech of a specific person.

These 40 distinctive sounds can be combined to produce virtually all spoken words in the

American-English language.

2. Project Description

The flowchart depicted in Fig. 1 describes the speech identification process. This

procedure uses two software packages, MATLAB and NeuralWorks, to perform both the

speech coding process and phonetic mapping. These processes, however, rely first on

obtaining a sampled speech signal. This set of voice data is generated by speaking into a

microphone connected to the computer. The microphone converts the speech into a

voltage that is sampled at discrete intervals with a 16-bit analog-to-digital (A/D)

converter that is intrinsic to the soimd card within the computer. Once sampled, the

speech signal is stored as Windows 'wav' file and is accessed in MATLAB as a data

vector. A speech coding process is appUed to this data vector and the resulting vocal

tract function and pitch fi-equency are placed into the input layer of the neural network.

The network is constructed using NeuralWorks and is able to phonetically classify

segments of speech.

Speech

Sample speech
signal and write

data to .WAV file

MATLAB
(1) Access .WAV file
(2) Window voice data
(3) Add zero padding
(4) Noirnalize to unity RMS
(5) Cepstral Analysis
(6) Homomorphic Filtering
(7) Formant estimations

NeuralWorks
(1) Construct bacl<-

propagation networl<
(2) Train network using

processing data for
all phonemes

(3) Phonetically classify
time slices of unknown
speech signal

Fig. 1 Flowchart of speech coding and classification algorithm

3. Contributions

The back-propagation neural network constructed in this project incorporates many

new design aspects that are new to the area of voice processing. A list of these specific

contributions include:

• Determined 40 phonemes to describe the voice of the speaker

Since the speech-identification algorithm developed in this paper is speaker

dependent, it was first necessary to adopt a list of phonemes that could phonetically

describe most spoken words. Several texts contain lists that describe the phonemes

which comprise most of the American-English language; however, within each of

these lists there is some disparity when regional dialects and accents are considered.

To account for some of these possible ambiguities or redundancies that might arise,

each phoneme was tested to insure that it coidd be defined by a distinct vocal tract

shape. Ultimately, 40phonemes were found to represent the voice of the speaker.

Of these 40, one phoneme was defined as a null or a pause in speech when nothing is

said.

• Constructed six data banks for training and classification

Six data banks were constructed that each contained examples of the 40 phonemes.

Three of these banks were used to train the network while the remaining three were

reserved for testing its performance.

• Constructed vocal tract model to serve as input to the neural network

Neural networks have been used in speech identification in the past, but these

networks have been limited to classifying only vowels. Of these networks, the

impvdse response of the vocal tract has been used as the sole determinant in

10

distinguishing between different phonetic pronunciations. The input to the network

developed in this project, however, includes the unpulse response of the vocal tract

and an estimation of pitch frequency describing the resonation of the vocal chords.

Also, there are a large number of variables that govern the speech coding process,

each of which significantly affects the ability of the neural network to correctly

classify speech. Some of these variables include record length, size and type of data

window, and the number of ensemble averages. Consequently, appropriate values

for these variables were determined through experimentation to optimize the

performance of the network.

Designed a back-propagation neural network to classify phonemes

Several parameters defined during the construction of the network such as the

nimiber of hidden layers, mmiber of processing elements, learning coefficient,

network range and momentum term were each individually tested. These variables

have a distinct impact on the ability of the network to correctly classify the

phonemes present within the speech signal. These values, however, must be

assigned through a trial and error process based on classification results. Hence,

several experiments were performed to determine the values assigned to these

variables.

Designed filtering routines to limit phonetic misclassifications

Within any sampled signal, there is inherently background noise present. To this

noise, further ambiguity is introduced when slight variations occur within the vocal

tract shape that can cause certaiu phonemes to have overlapping characteristics. This

variation coupled with additive noise can mask the pertinent features of a speech

signal and cause the phonemes within the signal to be misidentified. Filtering

routines based on ensemble averaging were developed as a method for "smoothing

11

out" these ambiguities. Additionally, a statistical analysis was developed to remove

both anomalies and redimdancies in the output.

4. Overview

Based on the variety of applications for voice recognition and processing systems, this

paper examines an algorithmic process for classifying phonemes within a speech signal.

This algorithm employs a speech coding technique for finding the transfer function

which effectively describes tiie physical attributes of the vocal tract. This information is

then applied to a neural network to determine the phonemes present in the original voice

data. In the next chapter, both the speech coding technique and back-propagation neural

network algorithms are further discussed. In particular. Chapter n introduces

homomorphic deconvolution and cepstral analysis as digital signal processing techniques

for extracting the impulse response of the vocal tract from a time-based analog speech

signal. These two techniques provide the information that is passed to the neural

network and used in the phonetic classification scheme. In Chapter III, a simulation is

presented showing the speech coding and classification process for an example phoneme.

This chapter concludes with results from the application of these algorithms as applied to

all 40 phonemes. Finally, Chapter FV completes the discussion by citing some general

conclusions and areas for further work.

12

Chapter II: Speech Coding and Neural Processing

The speech identification process can be divided into two areas of study, speech

coding and neural network processing. An introduction to each of these two areas, with

supporting examples, is now provided.

1. Speech Coding

To understand the speech coding process, it is necessary to begin with a description of

the physical nature of speech. Sound is produced when air is forced fi-om the lungs and

becomes filtered by variations in the vocal tract shape to produce a speech signal [3, p.

53]. These variations in shape determine the characteristics of the filtering function that

shape the fi-equency spectrum of the final speech signal. If this filtering function can be

directly extracted fi-om a sampled speech signal, it can be used to identify which phonetic

character is being pronounced. The rest of this section introduces a speech coding

technique for extracting this filtering function.

To begin the speech coding process, suppose that the vocal tract acts as a linear time-

invariant system within a sufficiently short time slice. This is a valid assimiption for a

short segment of speech where the vocal tract shape is unchanging and remains fixed in

shape. Hence, the frequency representation of a speech segment, F(jco), can be

represented as the product of an excitation source, E(jco), and a transfer function, H(JG)):

Fa(o) = EG(o)H(ja)) (2.1.1)

13

To separate these two functions, the complex logarithm of Eq. 2.1.1 is used to create a

real and imaginary parts that reflect the magnitude and phase angle respectively.

Ln(Faa))) = LnlFGo))! + jOp^,) (2.1.2)

Because phase angle carries only information about the time origin of the signal, the

imaginary part of Eq. 2.1.2 can be ignored [4, p. 360]. The real values, however,

represent a magnitude function where the excitation source and transfer function are

additive in the frequency domain [5, p. 266].

Ln|FG(o)| = Ln|E(JG))| + Ln|H(ja))| (2.1.3)

Taking the Liverse Fast Fourier Transform (IFFT) of the real portion of the complex

logarithm, Eq. 2.1.3, produces a time domain signal in which the logarithm of the

excitation source and impulse response are separable. This filtering process is known as

homomorphic deconvolution and involves a technique referred to as "cepstral

deconvolution." To employ this technique, the combined signals need to have their main

components of energy concentrated at different frequencies [5, p. 266]. This condition is

true of speech when only the transfer function and excitation source are considered. The

transfer function describing the vocal tract, H(jco), has a band-limiting characteristic that

confines the energy of the speech signal within a 5 kHz range. Conversely, the excitation

source, E(ja)), can be modeled as a white noise source which contains an equal

distribution of energy across a frequency range far in excess of 5 kHz. Because the

primary energy components of both functions do not overlap, cepstral analysis applies.

14

To implement this process, a second Fourier analysis is applied to the logarithm of the

frequency spectrum. The resultant function is called the "cepstrum"(Eq. 2.1.4). In

addition to separating the vocal tract response from the excitation source, the cepstrum

provides a technique for classifying speech into two categories, voiced and unvoiced.

During voiced speech the vocal chords vibrate at a constant frequency known as the

fundamental or pitch frequency. Alternatively, in unvoiced speech the vocal chords do

not move and air is forced past the glottis, tongue, teeth and lips. Both of the categories

have distinguishable features that become apparent in the cepstrum. For voiced speech,

the cepstrum contains a spike at integer multiples of the pitch period. This is not the case

for imvoiced speech, since the vocal chords do not resonate and the cepstrum contains no

noticeable spikes.

cepstrum = IFFT(Ln|F(j(B)|) (2.1.4)

Applying a rectangular time window to the real portion of the cepstrum separates the

impulse fimction from the excitation source. The frequency domain representation of

this filtered function reveals the formant frequencies. Formants are those frequencies

that resonate within the vocal tract. These specific frequencies appear as resonant peaks

in the frequency domain and provide an acoustic variable for relating the position of the

vocal tract to a phonetic pronunciation.

During the windowing process described in the preceding paragraph several

experiments were necessary to determine Ihe size of the time window that should be

applied to the real portion of the cepstrum. The size of this data window was decided

15

upon by making comparisons with various N-point moving average filters. Because

cepstral deconvolution removes the high frequency components of a signal, a moving

average filter produces very similar results and provides a measure for judging the

effectiveness of the cepstral smoothing process.

In many voice processing applications, a moving average filter is vised as an

alternative to cepstral smoothing simply because it provides a faster processing rate.

This advantage, however, is offset by the necessity to vary the width of the filter for

signals having substantially different frequency spectrum. Cepstral deconvolution, on

the other hand, naturally accommodates this width change. Fig. 2 shows two examples

using both cepstral analysis and a moving average filter. In the examples the formant

frequencies are shown for two separate phonemes. The phoneme "e" as in "bet" is a

vowel produced by exciting a fixed vocal tract with quasi-periodic pulses of air caused

by vibration of the vocal chords [4, p. 43]. Because of this vibration, certain frequencies

resonate within the vocal tract and the frequency spectrum is naturally smooth. The

phoneme "t", however, is an imvoiced stop consonant and is produced by a "brief

interval of friction followed by a period of aspiration" [4, p. 53]. This property creates a

frequency spectrum that shows substantial variations in specfral content. As a result, a

moving average filter of varying width is required. As seen in Fig. 2, however, cepstral

deconvolution eliminates this necessity.

Now that the speech coding process has been introduced, the discussion will focus on

neural network processing. The next section will begin with a definition of neural

16

•8 1.5

"S 0.5

« 1

10.8

Formarrt Esfimation(normalized to unity peak value), e

I I I Cepstfal DeconvDiution i i i i
I I I I I I I I I
4_ I I I I I. I I 1--
'i\ I I I I r I I I

I \ I I /-v I I I I I I

a JS,,<rCTX J-.^_.<1! i_JV-J. 1 I 1

□) 0.6

13 O'^
N

=5 0.2

3 0

500 1000 1500 2000 2500 3000 3500 4000
Hertz

Formant Estimation(nonnalized to unity peak value), e

500

4500 5000

^^
1 1—

1
1

Six-Ftoint Moving Average
1 1 1

Filter!
1

 1
1
1

1
1 rx;

 ±
1

 L .
1

 i_ 1 M-
1

1

__l
1
 1 yj

■/- 1
1

1
r

1
1 1

 r— -
I 1 1

1

1
1

1 / 1
1

1000 1500 2000 2500 3000
Hertz

3500 4000 4500 5000

(a)
Formant Estimatlon(normalized to unity peak value), t

o 0.5 - -^ -

%

1000 1500 2000 2500 3000 3500 4000
Hertz

Formant Estlmation(nonnalized to unity peak value), t

I Six-Point Moving Average Filter
I I I ■ -

500

(b)

4500 5000

1000 1500 2000 2500 3000 3500 4000 4500 5000
Hertz

Fig. 2 Formant estimation for phonemes (a) e and (b) t

17

networks as well as a description of their basic architecture. This explanation will be

followed by a detailed discussion of the training algorithm that is used to actually "teach"

the network to identify phonemes.

2. Neural Network Computing

(a) Introduction

Neural network analysis is an algorithmic process that relies on mathematical models

used to describe the functionality of the human brain. The himian brain consists of

millions of neurons which are used to communicate information. A simplistic

mathematical model for the functionality of these structures is constructed by

interconnecting processing elements that are analogous to the "cellular units of the

nervous system" [2, p. 1]. These elements are organized into successive layers that are

interconnected through an extensive network of synaptic junctions. These junctions

serve as transmission lines through which individual elements communicate. Each

element receives information from several input paths and processes the information

using "a continuous function of the combined input" [2, p. 1].

Most neural networks consist of three layers which vary in the number of processing

elements they contain. The first layer of processing elements forms the input buffer and

accepts numerical values that describe an event. The last layer is the output buffer and

"holds the response of the network to a given input" [2, p. 3]. In both of these layers, the

processing elements each apply an activation function to the weighted summation of

18

values transmitted across the input junctions. For reasons that will be discussed later in

this chapter, a sigmoid function is usually chosen for this purpose.

The true learning power of neural networks, however, results from the ability to adjust

the distribution of weights acting on the output values of the processing elements. These

weights can be adjusted such that the network is able to "identify and categorize" input

data. Fig. 3 shows a single processing element located in the middle layer.

Ij = Y,WjXi

Fig. 3 Model for neural processing element [2, p. 3]

For a back-propagation neural network, the values assigned to the input layer are

normalized within a network range. These normalized values are then weighted by an

appropriate factor, summed at the hidden layer, and applied to a sigmoidal function.

Undergoing a similar process at each succeeding layer, the values are propagated through

the network imtil a response arrives at the output buffer. The associated weights between

elements can then be adjusted by comparing this response to the desired output from a

known training set. This procedure adjusts the weights such that each element becomes

19

trained to trigger only when certain characteristic patterns are present in the input buffer.

Hence, when the network receives an input not included in the training set, the output

will be matched to the training set vector which has the most similar pattern.

Now that the architecture and basic concepts of neural network processing have been

introduced, the mathematics ofthe training algorithm will be discussed.

(b) Network Training

The following notation is used to describe the back-propagation training algorithm [2,

pp. 64-67]:

Xf^ value at the output of the j* neuron in layer s

MA'^ associated weight on the cormection joining the i* neuron in layer (s-1) to
the j* neuron in layer s

Additionally, a superscript "o" listed in brackets refers to the output layer ofthe network.

To begin, let the global error at the output ofthe network be represented by E such that:

E = 05Y,(d,-o,f (2.2.1)
k

where d^ is the desired k* output and o^ is the actual k* output. The local error at a

processing element k in the output layer can then be defined as the negative partial

derivative ofthe global error with respect to /["^ where /["' represents the sum ofthe

weighted inputs to the k* neuron in the output layer prior to applying the activation

function/(Eq. 2.2.2). Using Eq. 2.2.1 and Eq. 2.2.2, the local error at element k

becomes the derivative ofthe activation function,/ multiplied by the difference between

the desired and actual output (Eq. 2.2.3).

20

X] = fd^X^-"") = /(Z^) or Xt = fin) (2.2.2)
i

ef=-—= -—•^ = K-o,)-/'(4) (2.2.3)

where XI =o^^

The derivative of the activation function serves as a scaling factor and is multiplied by

the summation of the errors being propagated back to the single k* neuron. Eq. 2.2.4

(obtained from [2 p. 65]) reflects the error associated with the output of an element j

located in layer s.

<'=/'(/J-I(4^"^->^r) (2-2-4)
k

The scaling factor imposed by the derivative of the activation function causes the error to

converge to zero. This convergence is reinforced by choosing an activation function that

maps the output of each element into a specified range. Because a sigmoidal function

performs this mapping process over a zero to one range, it is usually used for the

activation function (Eq. 2.2.5):

/(z) = (1.0 + e-^)-' (2.2.5)

/'(z)=/(z)(l-/(z)) (2.2.6)

Combining Eq. 2.2.4, 2.2.5 and 2.2.6, the local error can be written as:

ef = X^\\.0-Xf)-Y,eT'^ -y^t^ (2.2.7)
k

The critical parameter passed back is the local error e^f. This parameter is used to

minimize the global error function, Eq. 2.2.1, which is used to judge the overall

performance of the network. This minimization process is accomplished by adjusting the

associated weights between processing elements via a gradient descent algorithm.

21

^f=-lcoefi:^ (2.2.8)

The gradient descent method adjusts the weights by a small differential that corresponds

in size and direction to the negative gradient of the error surface. The learning

coefficient, Icoef, in Eq. 2.2.8 is a parameter for controlling this adjustment.

For the purpose of xmderstanding the gradient descent algorithm and how it is used to

locate a minimum of the global error function, a network consisting of only a single input

and output processing element will be considered. A small network of this size is

sufficient for describing the mathematics of the process. Such a network would contain

only one connecting weight, and might produce a global error function similar to that

seen in Fig. 4.

20r
Global Error Function vs. Value of Connecting Weight

-20

1 -w

-60

-80

-100

I \ /, Local Milpimum

^. ...

r-—\h ^—
1 \! Glbtial Minimum \

-0.5 0 0.5
Value of Associated Weigfit

Fig. 4 Graph showing an arbitrary global error function

dE
The gradient descent method uses the derivative of the global error function (——)

to produce a differential increment that adds to the original weight. This process is

iterative and produces a new weight that converges toward a minimum of the global

error function according to:

22

-^ = (-^). (-?51) = -gi^i. xl^-" (2.2.9)
ji j j'

I

—TT = ■X'^' '^ where / is a constant. (2.2.11)

AMA^ =/coe/(e;^'-Jirr'i) (2.2.12)

The learning coefficient introduced in Eq. 2.2.12 is an additional parameter for changing

the magnitude of the delta weight, Aw,.,. If the learning coefficient is set too high, the

weights may oscillate about a minimum and never converge. If the learning coefficient

is set too small, the network may converge to the first local minimTim the gradient

descent method encounters, and a more optimal solution may have been overlooked.

Because there is no algorithm for defining an optimum learning coefficient, the value

must be determined through a trial and error process. It is also important to note that

while a local minimum does not represent a fully optimized weight distribution, this

TniniTmim may Still provide results that are acceptable within a preset error criterion.

An additional term may also be added to the delta weight to reinforce the general

trend of the step size and prevent oscillatory behavior. This term is referred to as the

momentum.

AwJ^' = lcoef(e^f • X}'''^) + momemtum ■ ^wf (2.2.13)

"Changing the weights as a linear function of the partial derivative makes the assumption

that the error surface is locally linear" [2, p. 68]. This assumption does not hold at pomts

of high curvature but can be corrected by adding a momentum term.

23

While the learning coefficient and momentum term force the global error function to

converge to a minimum, the locality of this minimum cannot be determined. No

algorithm exists for insuring that the weights have been adjusted to the values associated

with the global minimimi. Because of this, the weights must be adjusted through an

iterative process until the network is able to correctly classify all sets of data contained in

the training set.

3. Overview

In Section 1, the speech coding techniques were developed for finding the formant

frequencies and cepstrum. These coding processes can now be combined with the neural

network training algorithm described in Section 2 to phonetically classify a given speech

signal. Before the network can be trained and the weights adjusted, a set of training data

must first be developed. Chapter 3 describes the speech coding analysis for producing

this data using the phoneme "e" as in "bet."

24

Chapter III: Phoneme Recognition
and Simulation Results

The speech coding process outlined in Chapter II was appHed to each of 40 different

phonemes. Depending on the acoustical characteristics of the phoneme, the results of the

coding process varied. For example, voiced speech produces a strong spike at the pitch

frequency. For this fact, the voiced phoneme "e" was chosen to demonstrate the results

of the coding process. Results produced by other phonemes are similar, except the

formant frequencies are shifted and the cepstral spike varies in height.

1. MATLAB and NeuralWorks Simulation

An analog speech signal is first sampled using a 16-bit analog-to-digital converter and

stored as a binary 'wav' file. For the voiced phoneme "e", the sampled signal appears as a

periodic ftmction and is represented in Fig. 5. This sampled signal consists of several

hxmdred discrete points that are passed as a data vector into MATLAB.

Within MATLAB, the speech signal is segmented into 30 msec time slices/records

and multiplied by a Hamming window. The results of this process are shown in Fig. 6.

A record length of 30 msec was chosen because the vocal tract can be considered to be

imchanging for that small duration of time, yet the periodicity of the waveform is still

captured. Additionally, adjacent formant frequencies are often sufficiently close that a

Hamming window is needed to prevent less prominent frequency characteristics from

being masked by side band leakage. For this reason, a Hamming window was chosen.

After applying this data window, the gated speech signal is padded with zeros to a power

All pts. of Voice Data (vd) 25

120

Fig. 5 Voice data for the phoneme "e" as in "bet"

of 2, normalized to unity RMS, and transformed iising the radix-2 FFT (all MATLAB

programs are included in the Appendix). The result of this process is shown in Fig. 7

and represents the initial step of cepstral analysis.

In continuing this process, a second Fourier analysis is then applied to the logarithm of

the frequency spectrum. The resultant function is called the cepstrum and is shown in

Fig. 8. An important characteristic that results from this process is the occurrence of a

spike at each harmonic of the pitch frequency [4, p. 362]. For the voiced phoneme "e",

this initial spike occxars at 8 msec and corresponds to a pitch of 125 Hz.

To complete the speech coding process, a rectangular data window is applied to the

real part of the cepstrum to separate the vocal tract response from the excitation source,

thus revealing the formant frequencies (Fig. 9). These frequencies which appear as

humps in Fig. 9 shift depending on the position of the vocal tract.

26

Hamming Window Applied to Voic« Data

Fig. 6 Time slice of the phoneme "e"
with Hamming window applied

Ampl. Spectrum of Padded Voice Data (psd)

1000 2000 3000 4000 SOOO

Fig. 7 Amplitude spectrum for 30 msec
time slice of phoneme "e"

d of ttie Complfloc Cepetium

It 1 1 1
1
1
1

1 1 1 1
1 1 1 1
1 1 1 1

Lr^W
1 1 1 1
1 1 1 1

1 1 1 1
j 1 1 1

Fig. 8 Cepstrum for 30 msec
time slice of the phoneme "e'

Fomtent Estimalicn(noiTn0jized to unity peak value), e

2000 3000
Heitz

Fig. 9 Formant estimation for 30 msec
time slice of the phoneme "e"

Finally, the cepstrum and formant estimation are concatenated into a single data vector

that is stored as an ASCII file and is represented in Fig. 10. This vector serves as input

to the back-propagation neural network.

0.8

0.6

0.4

0.2

-0.2

Network INPUT for e.wav

/11 1 1

I ' ' '
\ 1 1 1
\i Ai 1

r 1'^ 1 1
1 1 11

1 j 1
1 1 1
1 1 (1

1 1 1 1

r 1
1 1

1 ! yy yi_..i.j
1 1
1 1

1 1

1 1
1 1

 1 J

1 1 1
1 1 1
1 1 1
1 1 1

1 1

0 50 100 150 200 250 300 350 400 460
Input Processing Element #

Fig. 10 Network Input

27

In order to provide training data to the network, six data banks were created to have

multiple examples of each phoneme. These data banks were prepared by segmenting

phonemes from various words and writing the data to a 'waV file. In each case, the

particular phoneme being segmented was over stressed to insure that the resonance

characteristic of the vocal tract was emphasized. This speech coding process was

followed for each phonetic pronunciation in the data banks. In addition, the data vector

containing the cepstrum and formant estimation was appended to contain an additional

vector that described the desired output of the network. This additional vector allowed

the network to compare its actual output to the desired results and correspondingly adjust

the associated weights between elements. This process can be observed in NeuralWorks

by examining the convergence of the global error fimction, Eq. 2.2.1. This fimction is

proportional to the square of the Euclidean distance between the desired output and the

actual output of the network for a particular input pattern [2, p. 69]. The error function is

displayed as a strip chart that is labeled "RMS Error" and can be seen in Fig. 11. In

28

addition, a graphical matrix that quantifies the classification rate of the network is also

displayed. This rate describes the ability of the network to correctly classify the training

data. By observing these parameters and their convergence, the performance of the

network can be partially judged. The most conclusive test, however, is attained by

testing the network on speech data that is not included in the training set. While the

network was trained on three data banks containing multiple examples of each phoneme,

a similar number of data banks was reserved for testing.

NeuialWoiks Piolessional ll/PLUS

409 Rocket

RMS Error 0.0096

1-1 Network Weights 1

Summation Value

Desired
Classification Rate

3^- .^. s|3 .^. 3^. ,^. .^. .|= .j. .^s e^- .^. .|3 s^. .|. 3^. .^, .|, 3|e .^= e^. .^.

1' 1= 11 '^ i i' t i' 'i' ^i' 1^ 11111 i' 11 i' f
i i lb lb IS lit le- li li? lb lb ^b ^!i

Loading data from file <train.nna>.
Testing 93

Fig. 11 NeuralWorks display of a back-propagation neural network trained to phonetically
classify time slices of a speech signal. The network consist of 409 inputs that represent the
frequency response of the vocal tract and the cepstrum. The hidden layer contains 400
processing elements and is fully connected to an output layer of 40 elements. These 40
elements each correspond to one phoneme.

29

2. Network Construction and Local Optimization

When attempting to optimize any neural network, several design variables become

imperative to the performance of the system. The most important of these network

variables include:

• Input Data
• Number of processing elements
• Number of hidden layers
• Connections between processing elementsAayers
• Learning coefficient
• Network range/Gain
• Momentum term

Because there is no algorithm for determining a globally optimized value for each of

these variables, estimates must be assigned and then adjusted according to the RMS error

and classification rate. The choice of these estimates was based on specific

considerations that will now be discussed for each variable.

(a) Input Data

The saying "garbage in.. .garbage out" applies as much to neural networks as it does to

all other facets of data processing [6, p. 64]. For this reason, the most crucial element of

neural network computing involves choosing the input data such that the network is

provided enough information to effectively map the input to the output. The input for

the network constructed in this project contains the formant estimations of the vocal tract

coupled with a segment of the time domain cepstral fimction. Because the cepstrum

produces a spike at the pitch fi-equency for voiced speech, the network is able to further

define the resonant characteristics that distinguish different phonetic pronunciations.

Although this network input does produce defining results for different pronimciations,

there are, however, still several variables entwined in the speech coding process that may

30

create some ambiguity between phonemes. Some of these variables include the sampling

rate, record length, windowing size applied to the cepstrum, and the number of ensemble

averages.

0 A sampling rate of22.05 kHz was used. Accounting for the bandlimited

characteristic of speech, this choice exceeded the Nyquist sampling rate which

specifies that a signal must be sampled at a fi-equency of at least twice the bandwidth.

Sampling at the minimum Nyquist rate would have given insufficient resolution in

the fi-equency domain.

0 Considering again that speech is bandlimited to approximately 5 kHz, the formant

estimations were extracted for this frequency range. It was assumed that any formant

frequencies that occurred outside this bandwidth resulted from transient sounds that

provided no defined acoustical characteristics, and thus were ignored.

0 Background noise is present in the sampled signal and introduces a degree of

ambiguity in the formant estimation and cepstrum. This ambiguity may appear as a

slight shift in the formant frequencies or a small change in amplitude of the cepstral

spike. By averaging several records or time slices, this ambiguity becomes

negUgible. This process is known as ensemble averaging and improves results by

averaging several records over a given expanse of time. While it may seem that the

classification rate would naturally improve by continually increasiug the number of

ensemble averages, a phonetic pronunciation produced over a short period of time

may actually be overlooked. Hence, the number of ensemble averages was confined

to six.

0 Each record length was chosen to represent 30 msec time slices of the speech signal.

The window size was kept as short as possible so as to minimize the variations of

speech parameters across the analysis interval. "The longer the window, the greater

31

the variation from beginning to end" [4, p. 377]. Additionally, each successive slice

overlapped the preceding slice by 15 msec. This overlap was introduced to allow the

number of ensemble averages to be increased.

0 The windowing size applied to the cepstrum was chosen as 200 data points for a

sampling rate of 22.05 kHz. This windowing size was chosen by making

comparisons with various formant estimations produced by different N-point moving

average filters, as discussed in Chapter II, Section 1.

(b) Number of Processing Elements

Using data banks that contained examples of 40 phonemes spoken by an adult male, a

complete set of training data was prepared. From this data set, the number of elements in

the input layer was determined. The input layer varied in length depending on the record

size; but for a sampling rate of 22.05 kHz and a time slice of 30 msec, an input buffer of

409 elements was necessary to capture the formant frequencies and first cepstral spike.

Of these 409 elements, 255 accoxmted for the formant frequencies under 5 kHz while the

remaining 154 were used as a buffer to accept the sampled time data surrounding the first

cepstral spike which occurs at 125 Hz. Accoimting for a possible 50 Hz deviation from

this estimation, 154 processing elements were used. These elements account for an

initial spike occurring between 5.7 and 13.3 msec in the cepstral domain.

The next consideration was deciding upon the architecture of the output layer. The

structure of a back-propagation network is designed such that each element in the output

layer corresponds to one category of data. Hence, the output layer was constructed using

40 processing elements such that each element was indexed to a specific phoneme. Table

3.2.1 shows all 40 phonemes and their corresponding assigned index. These index values

became the identifier for determining which phoneme was represented in the input

32

buffer. To explain how this process works, consider a set of data being appHed to the

input buffer. This data is processed by the network and a corresponding response arrives

at the output layer. The element in the output buffer containing the highest value

specifies the category with which the input string is most closely associated.

The final architectural design problem involved choosing the number of processing

elements in the hidden layer. Throughout testing, several networks were created using a

hidden layer of varying length. Four-hundred processing elements in this layer were

ultimately foimd to produce the best results according to minimimi global error criterion.

Note that this value may not represent an optimized value.

(c) Number of Hidden Layers

During initial testing, only one hidden layer was used. The other network variables

were tested sequentially, and sufficient classification results were obtained without

having to add further layers.

(d) Connections Between Processing Elements and Layers

In the back-propagation algorithm there are two techniques for interconnecting

successive processing elements and layers. In the traditional back-propagation algorithm,

every element is connecting to all elements in the next succeeding layer. NeuralWork's

back-propagation algorithm, however, provides an option of connecting each element to

all previous elements. Both of these variations were explored, and the traditional back-

propagation network showed a lower RMS error and a better classification rate for newly

33

Index Letter Representation Example ^^H Index Letter Representation Example

1 lY beet 21 M maybe

2 I bit 22 N no

3 E bet 23 NG rung

4 AE bat 24 B bat

5 A hot,ahnost 25 D dumb

6 ER bird 26 G gold

7 UH but 27 P peck

8 OW tome 28 T tone

9 OO boot 29 K cold

10 U foot 30 V vast

11 AI buy 31 TH think

12 01 boy 32 Z zip

13 AU how 33 ZH leisure

14 El bay 34 F fim

15 AX about 35 S sun

16 DH ^an 36 SH ^op

17 W win 37 H hat

18 L lamp 38 DZH jam

19 R rage 39 TSH chip

20 Y yes 40 null

Table 3.2.1 English phonemes and assigned index

34

presented test data. From these results, it was found that the traditional back-propagation

network was able to successfully classify phonemes.

(e) Learning CoefRcient

The learning coefficient is a parameter that is used to control the size of the delta

weight in the learning/training process (Eq. 2.2.8). Additionally, the learning coefficient

works in conjunction with two other variables, the transition point and the learning

coefficient ratio. Changing any of these three values effects the learning process and

produces similar results. Table 3.2.2 lists the values used for each of these variables.

These values were corroborated with other test results that were obtained from previous

research into neural networks and vowel recognition [7, p. 38].

LAYER LCoef
INPUT Layer 0.300
Hidden Layer 0.250
OUTPUT 0.150

Learning Coefficient Ratio = 0.5
Transition Point = 10,000

Table 3.2.2 LCoef, LCoef Ratio, and Transition Point

"The learning coefficient ratio sets the amount to divide the learning coefficient value by

for the first transition. This ratio decays exponentially for subsequent transition points

that are heuristically set to 3, 7, 15, and 31 times the initial transition point" [8, p. 25,26].

For example, if the learning coefficient is 0.3 and the learning coefficient ratio is 0.5, the

network will train with a learning coefficient ratio of 0.3 for the first 10,000 training

35

iterations. After this training period, the value will change to 0.15 for the next 20,000

iterations.

During experimentation the learning coefficients and the learning coefficient ratio

were fixed. The transition point was then changed and the RMS error for the network

was observed for 100,000 training iterations. A transition point value of 10,000 was

found to provide the best results.

(!) Network Ranges/Gain

Both the network range and the gain help to prevent an undesirable network condition

known as saturation. When this occurs, the network effectively stops learning. To

prevent this from happening, the data vector applied to the input buffer of the network is

normalized and the sigmoidal activation function is slightly altered. To understand this

process, first consider the gain. This value serves as a multiplier that is applied to the

summation value of the processing element prior to computation of the activation

function,/

/(z) = (1.0 + e-''^^)-' (3.2.1)

When the summation values become large, the transfer function produces an activation

value of zero or one. "Consequently, the derivative becomes zero and the scaled error is

always zero" [2, p. 73]. When this occurs, the processing elements stop learning.

f'{z) = f(z)(l - fiz)) = 0 whenXz) becomes saturated.

Therefore:

ef = X^^(1.0 - X^^) • Y,ef'^ ■ <'"'' = 0 (3.2.3)

36

The network range and gain both serve to prevent this condition from happening.

The network range maps the input data within a specified set of values and helps to

minimize the summation term at each element. This range was chosen such that the

formant frequency estimations were normalized between zero and one. Similarly, the

gain was adjusted to guard against saturation over a learning session of 100,000

iterations. NeuralWorks supports a graphical display that monitors the output summation

of each processing element in the network (Fig. 11). Through 100,000 iterations, these

simunation terms were found to range in value between -8 and 8. To insure a monotonic

mapping of the sigmoid function for this range of summation values, a gain value of 0.5

was chosen.

(g) Momentum

The momentum term is generally a percentage and was chosen to be a constant value

of 40%. An increase in this value reinforces the general trend of descent in the linear

approximation to the global error ftmction and produces faster convergence toward a

minimum. A smaller value, however, minimizes the error term in the vicinity of a

minimiim occurring at a point of high curvature. There are distinct advantages to both a

small and large numerical momentum term. A value of 0.4 was chosen as a compromise

to the benefits of both.

3. Best Network
After constructing several networks and experimenting with both the architectural

design and the associated parameters governing the learning process, the classification

results shown in Fig. 12 were obtained. These results were collected using test data that

was drawn from a separate bank that had not been introduced to the network during the

Phoneme Classification
Rate (%)

lY 100
I 100
E 100
AE 100
A 100
ER 100
UH 100
OW 100
OO 100
U 100
AI 83.3
01 100
AU 71.4
El 100
AX 100
DH 100
W 100
L 100
R 100
Y 100

Phoneme Classification
Rate (%)

M 100
N 100
NG 93.8
B 0
D 0
G 0
P 0
T 0
K 0
V 100
TH 0
Z 100
ZH 100
F 0
S 100
SH 100
H 0
DZH 100
TSH 100
null 100

37

Fig. 12 Phoneme classification rate for newly introduced test data

training process. The data bank contained examples of all 40 phonemes; however, the

actual number of test records per phoneme varied. This variation resulted jfrom

differences in the time length of each recorded phoneme. On average, 37 examples were

presented to the network for each phoneme. As evident from Fig. 12, twenty-eight

phonemes showed a hxmdred percent classification rate. For those phonemes, the

network outperformed any voice processing system currently being marketed. Nine

phonemes of the forty, however, showed a zero percent classification rate. This fact can

be attributed to the acoustic characteristics intrinsic to each of the unidentified phonemes.

With the exception of H, each of the unidentified phonemes (B, D, G, P, T, K, TH, and

F) are transient, noncontinuant sovmds which are produced by building up pressure

behind a total constriction somewhere in the oral tract [4, p. 52]. As opposed to the other

twenty-eight phonemes, these eight show no defined resonance within the oral cavity.

Resonance does occur but is too variant in nature to define any characteristic formants.

Because the neural network relied on the resonance characteristics of speech to identify

38

the various phonemes, the network was unable to correlate the formant estimation and

cepstrum with the pronunciation of these eight phonemes.

The other phoneme showing a zero percent classification rate was H. This phoneme

shows the same resonant characteristics of the vowel which follows its pronimciation.

For this reason, H was always misidentified as a vowel.

With the exception of these nine phonemes, the NeuralWorks and MATLAB routines

correctly classified all test words. For example, the network made the classification

shown in Fig. 13 when presented the word "me."

» display(3) % Function call to read the output of the neural network >^

The phonemes/indexes identiJBed were:

0.5 sec: 21 1 1 1 1 1

» condense(3) % Function caU to remove repetitive phonemes in the output

The phonemes/indexes identified were: 21 1

Fig. 13 Example output from a MATLAB fQe that retrieves information contained in the
output buffer of the network

The two functions, "display" and "condense," simply read the response that arrives in the

output buffer of the neural network. The index numbers that these functions identify

correspond to the phonemes Usted in Table 3.2.1. The twenty-first element corresponds

to the phoneme "M" and the first element corresponds to the phoneme "lY." This is the

correct phonetic representation for the word "me." In the first routine, the output of the

network is displayed using an average taken over three time sUces. For instance, the first

60 msec of the test word was divided into three records each with 15 msec of overlap.

The output of the network for these three records was then added together, and the

corresponding record element containing the highest number identified the phoneme.

This method of averaging records helps to prevent ambiguities in cases where two or

39

more elements in the output layer might contain very close values. In the second

routine, the string of indexes is condensed and all repetitive occurrences are removed.

4. Overview and Concluding Remarks

In experimenting with both the speech coding process and the network design, several

back-propagation neural networks were constructed. Each ofthese networks varied in

either the coding data that the input buffer received or in the processing choices

governing the actual design of the network. Some ofthese choices included the number

of processing elements, connections between elements/layers, transition point, network

range, and gain. By observing general trends imposed by changing each ofthese

network variables, an optimized network was created that showed a hundred percent

classification rate for twenty-eight phonemes. Nine phonemes, however, were

impervious to correct classification. Because the network created a fundamental

classification scheme that rehed entirely upon the resonance characteristics of each

phonetic pronunciation, any phoneme not showing a consistent fi-equency representation

would be difficult to classify. This occurred with eight of the phonemes, these being B,

D, G, P, T, K, TH, and F. One other phoneme, H, showed a formant estimation that

possessed the same fi-equency characteristics as the vowel sovmd following its

pronunciation. For this reason, it was always misclassified as a vowel.

40

Finally, it is important to remember that this paper presents one method for speech

identification. Combining the speech coding and neural processing techniques

introduced in this paper with other classification schemes might produce better results.

41

Chapter IV: Conclusion

1. Summary

A speaker-dependent back-propagation neural network was designed to recognize the

phonemes present within a speech signal. This recognition system relies on information

derived through a speech coding process that provides acoustical characteristics

describing the physical nature of the vocal tract. This acoustical data consist of the

formant frequencies concatenated with the first cepstral spike. Using this information,

the network was trained to identify characteristic patterns that describe the phonemes

present within a voice signal.

Because the recognition system is speaker-dependent, a list of phonemes was

developed that could be interchanged to produce most spoken words in the English

language. For these different phonetic pronimciations, a vocal tract model was created

using a speech coding process that employed homomorphic deconvolution and cepstral

analysis. This coding process was refined to provide the most clear description of the

formant and pitch frequencies. Consequently, various experiments were performed to

determine the record length and the size and type of data windows used during the

process.

With a vocal tract model constructed for each phoneme, the network was trained on

three data banks. Throughout this training process, the number of processing elements,

learning coefficient, and gain were adjusted to produce a successful classification rate

42

and minimal global error. For newly introduced test data, the back-propagation neural

network proved successful in identifying 28 phonemes with a classification rate of 100

percent. Additionally, three other phonemes (AI, AU, NG) were identified with an

average classification rate of 83 percent. Each of these phonemes possessed strong

resonant characteristics that could easily be deciphered fi-om the formant estimation and

first cepstral spike. The phonemes B, D, G, P, T, K, TH, F, and H, however, were

misidentified. Because the vocal tract model relied entirely upon the fi-equency

characteristics of the vocal tract, the model did not provide enough information to

successfully map the input for these nine phonemes to the correct corresponding phonetic

ouput. In particular, the phoneme H is not dynamic in nature but has a vocal tract shape

that matches the vowel sound following its pronimciation. For this reason, H was always

misidentified as the vowel following it.

When used for word classification, this network provided excellent results. Because

the vocal tract transitions slowly in time, there is a naturally smooth transition between

different phonetic pronimciations that allows ensemble averaging to be used. In addition

to this method of averaging records, a statistical analysis was also applied to the output of

the neural network to accoimt for any ambiguities or redundancies that appeared. With

the exception of any transient, noncontinuant sounds, the network correctly classified all

the phonemes present within the test words.

43

2. Future Work

There are several areas wiiere the classification scheme presented in this paper could

be improved. One of these involves restructuring the input buffer to accept a new data

vector containing the formant estimation, cepstrum, and filtering coefficients of the time

domain speech signal. These filtering coefficients can be used with a random noise

source to reproduce the original speech signal. These coefficients have been used in the

past for identification and show distinct characteristics that help to further distinguish

between phonemes.

3. Future Applications

The possible applications of a successful phonetic translator are almost unending.

Using the index system introduced in Table 3.2.1, an analog speech signal could be

transmitted as a 6-bit binary serial code. Although a synthetic voice decoder would be

necessary to hear the reproduced signal, the information content would remain

unchanged. Other benefits could include real-time interaction with machines, simple

voice to text processing, or linguistic translators. All of these systems have the

advantage of using a method of interface that is natural, inexpensive, and unspecialized.

44

References

[1] Andreas Spanias and Edward M. Painter, "A Software Tool for Introducing Speech
Coding Fundamentals in a DSP Course," IEEE Transactions on Education, Vol. 39,
No. 2, p. 143, May 1996.

[2] NeuralWare, Inc., Neural Computing, NeviralWare Publishing, 1995.

[3] GordonPelton, VoiceProcessing,McGTaw-Bi\\, 1993.

[4] Lawrence Rabiner and Ronald Schafer, Digital Processing of Speech Signals,
Prentice-Hall, 1978.

[5] John Proakis and Dimitris Manolakis, Digital Signal Processing 3rd Edition,
Prentice-Hall, 1996.

[6] Karla Yale, "Preparing the Right Data Diet for Training Neural Networks," IEEE
Spectrum, Vol. 34, No. 3, pp. 64-66, Mar. 1997.

[7] Louiza Sellami, "Vowel Recognition in Adaptive Neural Networks, " Master Thesis,
Electrical Engineering Dept., Univ. of Maryland, 1988.

[8] NeuralWare, Inc., Reference Guide, NeuralWare Publishing, 1995.

45

Appendix: MATLAB Programs

1. Setpath.iii 46

2. Setvars.m 47

3. Voice_l.m 49

4. Trauidat.m.....— 55

5. Traiii.in 57

6. Testdatm 60

7. TriaLm 62

8. Class.m 66

9. Voice_t.iii........... 68

10. Display.m..—.— 72

11. Condense.m.............74

46

1. Setpath.m

% The following M-file adds the NeuralWare
% working directory(c:\nw2v523) to the
% path of the Matlab working directory.
%
P=path;
path{P,'c:\nw2v523');
P=path;
path(P,'c:\matlab\working2\wavfile');
path
clear P;

47

2. Setvars.m

% The following program sets the variables associated with
% the speech coding process that prepares the information
% being passed to input layer of the neural network for
% both training and testing.
%
% Set parameters
% d = msec, per time slice
% ws = window size to be applied to cepstrum
% N = # of output elements
% n = # of input elements
% 'low' & 'high' pertain to the network ranges for input into the neural
network
% nv = number of ensemble averages; nv = 1 produces no averaging
clear;
load vars;
fprintf('\n\nCURRENT PARAMETER SETTINGS:\n\n');
fprintf('Sampling Rate = %2.2fkHz\n', vars(l));
fprintf('msec, per time slice(d) = %d\n', round(vars(2)/vars(1)));
fprintf('Overlaping time(msec) between consecutive slices = %d\n',
round(vars(3)/vars(1)));
fprintf('Window size applied to cepstrum(ws) = %d\n', vars(4));
fprintf('# of output elements in network(N) = %d\n', vars(5));
fprintf('#. of input elements(n) = %d\n', vars(6));
fprintf('Network range minimum(low) = %l.lf\n', vars(7));
fprintf('Network range maximum(high) = %l.lf\n', vars(8));
fprintf('# of ensemble averages(nv) = %d\n\n', vars(9));
%
vars(1)=22.05; % kHz
T=l/(fsamp); % mSec
ncomp=0; % Number of matched filter comparisons
% If ncomp is changed, the same alteration must be made in
% m-files train.m and trial.m
%
d = input('Enter value for d: ');
if isempty(d)==0

vars(2) = fix(d*vars(1));
end
%
vars(3)=fix(vars(2)/2);
%
ws = input('Enter value for ws: ');
if isempty(ws)==0

vars(4) = WS;
end
%
N = input('Enter value for N: ');
if isempty(N)==0

vars(5) = N;
end
%
low = input('Enter value for low: ');
if isempty(low)==0

vars(7) = low;
end

48

%
high = input('Enter value for high: ');
if isempty(high)==0

vars(8) = high;
end
%
nv = input('Enter value for nv: ');
if isempty(nv)==0

varsO) = nv;
end
%
pitch=input('Enter pitch: ');
if isempty(pitch)==0

vars(lO) = pitch;
vars(ll) = fix((l/(pitch+50)*{1000*fsamp)));
vars(12) = fix({l/(pitch-50)*(1000*fsamp)));

end
%
% Compute n:
exp_2=ceil(l/logl0(2) * loglO(vars(2)));
nz = 2^(exp_2);
deltaF=1000/{nz*T);
vars(6)=fix(5000/deltaF)+vars(12)-vars(11)+l+ncomp;
%
%
fprintf('\n\nNEW PARAMETER SETTINGS:\n\n•);
fprintf('Sampling Rate = %2.2fkHz\n', vars(l));
fprintf ('msec, per time slice (d) = %d\n', ro-und(vars (2)/vars (1))) ;
fprintf('Overlaping time(msec) between consecutive slices = %d\n',
round(vars(3)/vars(1))) ;
fprintf('Window size applied to cepstrum(ws) = %d\n', vars(4));
fprintf{•# of output elements in network(N) = %d\n', vars(5));
fprintf(•# of input elements(n) = %d\n', vars(6));
fprintf('Network range minimum(low) = %l.lf\n', vars(7));
fprintf('Network range maximum(high) = %l.lf\n', vars(8));
fprintf('# of ensemble averages(nv) = %d\n', vars(9));
fprintf('Speakers Pitch Frequency = %dHz\n\n', vars(10));
%
save vars;

49

3. Voice_1.m

% voice_l.m
% Read voice data created by Soimd Blaster's 16 ADC
% Board. The sampling rate is 22.05KHz and the
% data settings are: Mono, 16 bit signed integer
% words/samples.
% This program time gates the data and plots the
% following:
% (1) Voice Data Array
% (2) Time Gated Data with Windowing Applied
% (3) Gated Data with Padding
% (4) Normalized Data
% (5) Amplitude Spectrum
% (6) Energy Spectral Density
% (7) Real of the Complex Cepstrum
% (8) Formant Estimation
% (9) Network INPUT
% Written by MIDN 1/c St. George
%
clear;
%
% Set parameters
% ws = window size to be applied to cepstrum
% 'low' & 'high' pertain to the network ranges for
% input into the neural network
% N-point moving average filter
%
load vars;
fsamp=vars(1); % sampling rate in kHz
T=l/fsamp; % T in msec.
ws=vars(4);
low=vars(7);
high=vars(8);
N=6;
taul=vars(11);
tau2=vars(12);
%
% Read the Raw Return data.
%
test_fn=input('Input the File Name(without extension)=','s');
test_fn_ext=[test_fn,'.wav'];
vd=wavread(test_fn_ext);
%
%
% String arrays for the plots
%
c=fix(clock);
tpl=sprintf(•, USNA %d/%d/%d %d:%d',c(1),c(2),c(3),c(4),c(5)) ;
%
%
% Now Show vd array
%
x_t=0:T:(length(vd)-1)*T;
% figured) ;
siibplot(lll) ;

50
plot(x_t' ,vd, 'b') ;
grid;
xlabel('msec.');
ylabelCMag. •) ;
t=['All pts. of Voice Data (vd)']; %, •,test_fn,tpl];
title(t); ■»
figure(gcf);
ppn=[test_fn,'_vd'];
plot_fn=[■c:\matlab\working2\plots_wp\',ppn];
eval(['print -dmeta ',plot_fn]);
%
%
% Now Time Gate this Voice Signal
%
%
st=input{'Input the Starting Time(msec), st=');
ns=fix(st/T);
figure(gcf);
d= input ('Input the Duration of the Time Slice (in msec), d= ') ;
np=fix(d/T);
ne=ns+np-l;
vd_gate(1:np)=vd(ns:ne);
%
% Window data using Hamming window
%
window=hamming(np);
window=window';
vd_w=window.*vd_gate;
%
% figure(2);
plot (x_t (Imp) ,vd_w, 'b') ;
grid;
xlabel('msec.');
ylabel('Mag.•);
t=[('Hamming Window Applied to Voice Data')];
title(t);
figure(gcf);
ppn= ttest_fn,'_gw'];
plot_fn=['c:\matlab\working2\plots_wp\',ppn];
eval(['print -dmeta ',plot_fn]);
pause;
%
%
% Find minimum padding to perform radix-2 fft
%
exp_2=ceil(1/loglO(2) * loglO(np));
nz = 2^(exp_2);
nzh=nz/2;
%
% Add padding
%
pvd=zeros(l,nz);
pvd(l:np)=vd_w(l:np);
%
% Now Show pvd array
%
% figure(3);
X t=0:T:(nz-l)*T;

51
plot(x_t(l:nz),pvd,'b');
grid;
xlabel{'msec.');
ylabelCMag. •) ;
t=[•Padded Voice Data (pvd)'3; %, ',test_fn,tpl];
title(t);
figure(gcf);
ppn=[test_fn,'_pd'];
plot_fn=['c:\matlab\working2\plots_wp\',ppn];
eval{['print -dmeta ',plot_fn]);
pause;
%

% Now remove the average value and normalize the data to have
% unity rms value.
%
avg=mean(pvd(1:np));
pvd{l:np)=pvd(l:np)-avg;
temp=pvd(l:np) .'^2;
rms=mean(temp);
rms=rms'*'0.5;
pvd (Imp) = (1/rms) *pvd(l:np) ;
clear temp;

% Now show the normalized pvd array
%
% figure(4);
plot(x_t(l:nz),pvd,'b');
grid;
xlabel('msec.');
ylabelCMag. ') ;
t=['Normalized Voice Data (pvd)']; %, ',test_fn,tpl];
title(t) ;
figure(gcf);
ppn=[test_fn,'_nm'];
plot_fn=['c:\matlab\working2\plots_wp\',ppn];
eval(['print -dmeta ',plot_fn]);
pause;
%
%
%
% Now compute the FFT of padded voice data.
%
F=1000*fsamp/nz; % F in HZ
PVD=fft(pvd);
x_f=0:F:(nz-l)*F;
band=fix(5000/F);
%
% figure(5);
plot{x_f(l:band), abs(PVD(1:band)),'b');
grid;
xlabel('Hertz');
ylabelCMag. ') ;
t=['Ampl. Spectrum of Padded Voice Data (pvd)']; %, ',test_fn,tpl];
title(t) ;

52
figure(gcf);
ppn=[test_fn,'_am'];
plot_fn=[■c:\matlab\working2\plots_wp\■,ppn];
eval(['print -dmeta ',plot_fn]);
pause;
%
%
% Compute the Energy Spectral Density of PVD
%
%
% figure(6);
plot(x_f(l:nzh),20*loglO(abs(PVD(l:nzh))),'b');
grid;
xlabel(•Hertz');
ylabelC Energy Spectral Density(Decibels) ');
t=['Energy Spectral Density'];
title (t);
figure(gcf);
ppn=[test_fn,'_sd'];
plot_fn=['c:\matlab\working2\plots_wp\',ppn];
eval{['print -dmeta ',plot_fn]);
pause;
%
%
%
% Find the real of the complex cepstrum
%
h = PVD;
% logh = real(log(PVD + 0.01)); --> identical statement to line below
logh = log{abs(h)+0.01);
% an offset value of O.Ol was added to prevent the log of zero
cep = real(ifft(logh,nz));
%
% figure(7);
plot(x_t(l:nzh),cep(l:nzh),'b') ;
%
% With Fs=20.05 KHz, 200 sampling points will provide a spike
% for a pitch frequency above 100 Hz.
%
grid;
xlabel{'msec.');
t=['Real of the Complex Cepstrum'];
title (t);
figure(gcf);
ppn=[test_fn,'_cp'];
plot_fn=['c:\matlab\working2\plots_wp\',ppn];
eval(['print -dmeta ',plot_fn]);
pause;
%
%
% Show formant frequencies
% First Formant {200-1200 Hz}
% Second Formant {500-3000 Hz}
%
%
cepstrum(nzh+l:nz)=cep(l:nzh);
cepstrum(1:nzh)=cep(nzh+l:nz);
window=hamming(ws);

53
window=window';
ht=cepstrum(nzh-ws/2+l:nzh+ws/2);
ht_w=window. *ht ,-
ht_p=zeros(l,n2);
ht_p(l:ws)=ht_w(l:ws);
HS=f f t (ht_jp) ;
HS_ABS=abs(HS);
%
% Normalize data to meet scaling and offset criteria.
%
scale=(high-low)/(max(HS_ABS)-min(HS_ABS));
offset=(max(HS_ABS)*low - min{HS_ABS)*high)/(max(HS_ABS) - min(HS_ABS));
X_adj=scale*HS_ABS+offset;
%
% Add first cepstral spike to normalized formant estimation
%
cep(taul:tau2)=cep(taul:tau2)+abs{min(cep(taul:tau2)));
X_adj =[X_adj{1:band) cep(taul:tau2)];
%
% N-Point moving average filter
%
% PVD_ABS=abs(PVD);
% for i = l:band+N
% PVD_ABS(i)=sum(PVD_ABS(i:i+N-1));
% end;
% PVD_ABS=log(PVD_ABS/N);
% scale=(high-low)/(max(PVD_ABS)-min(PVD_ABS));
% offset=(max(PVD_ABS)*low - min(PVD_ABS)*high)/{max(PVD_ABS) -
min(PVD_ABS));
% PVD_N=scale*PVD_ABS+offset;
%
%
%
% figure(8); -
% subplot(211);
plot(x_f(1:band),abs(X_adj(1:band)),'-b');
grid;
xlabelCHertz') ;
ylabel(' Normalized Log(Magnitude) ');
t=['Formant Estimation(normalized to unity peak value), ',test_fn];
title (t);
% text (1000,0.95,'Cepstral Deconvolution','sc');
%
% subplot(212); plot(x_f(l:band),PVD_N(1:band),'-b');
% grid;
% xlabel('Hertz')
% ylabel(' Normalized Log(Magnitude) ');
% t=['Formant Estimation(normalized to vinity peak value), ',test_fn];
% title(t);
% text (1000,0.95,'Six-Point Moving Average Filter','sc');
figure(gcf);
ppn=[test_fn,'_fm'];
plot_fn=['c:\matlab\working2\plots_wp\',ppn];
eval(['print -dmeta ',plot_fn]);
pause;
%
% Network Input
%

54

plot(X_adj, '-b');
grid;
xlabel('Input Processing Element #');
t=['Network INPUT for ',test_fn_ext];
title(t),•
figure(gcf);
ppn=[test_fn,'_ni'];
plot_fn= ['c:\matlab\working2\plots_wp\',ppn];
eval(['print -dmeta ',plot_fn]);

55

4. Traindatm

% The following M-file creates the train.nna
% file used by NeuralWare to train the back-
% propagation network. All of the phonemes
% are equally represented in the training data.
% This is accomplished by using ensemble averaging
% over several time slices.
% Written by MIDN 1/c St. George
%
clear;
P=path;
dir_name=input('Enter directory containing voice data:
path(P, ['c:\matlab\working2\', dir_name]);
if exist('train.nna')==2

delete train.nna;
fprintf{'\nOverwriting file train.nna!\n\n');

else

end;
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train
train

fprintf('\nCreating file test.nna!\n\n');

iy , 1);
i' 2);
e' 3);
ae , 4);
a' 5);
er , 6);
uh , 7);
ow , 8);
oo , 9);
u' 10);
ai ,11);
oi ,12);
au ,13);
ei ,14);
ax ,15);
dh ,16);
w' 17);
1' 18);
r' 19);
y 20) ;
m' 21);
n' 22) ;
ng ,23);
b' 24);
d' 25);
g" 26);
P' 27) ;
t' 28) ;
k- 29);
V' 30);
th ,31);
z' 32);
zh ,33);
f' 34);
s' 35);

56
train('sh' ,36) ;
trainCh', 37);
train Cdzh' ,38) ;
train('tsh',39);
train('null',40)
path(P);
clear;

57

5. Train.m

fiinction dv=train(fn, index)
% train.m
% Read voice data created by Soiind Blaster's 16 ADC
% Board. The sampling rate is 22.05KHZ and the
% data settings are: Mono, 16 bit signed integer
% words/sample. This program time slices the data
% and writes the average formant frequencies to
% a training 'nna' file.
% The parameter 'index' represents the corresponding
% output element of the neural networkis which is
% driven high for the training data contained in fn.
% Written by MIDN 1/c St. George.

% Set parameters
% np = # of data points composing time slice for
% a sampling rate of 20.05 KHz
% no = # of overlaping data points in consecutive
% time slices
% ws = window size to be applied to cepstrum
% N = # of output elements
% n = # of input elements
% 'low' & 'high' pertain to the network ranges for
% input into the neural network
ncomp=0;
load vars;
np=vars(2)
no=vars(3)
ws=vars(4)
N=vars(5);
n=vars{6);
low=vars(7);
high=vars(8);
taul=vars(11);
tau2=vars(12);
%
% Read the Raw Return data.
%
fn_ext=[fn, '.wav'];
vd=wavread(fn_ext);
%
% Now Time Gate this Voice Signal
%
% Find minimum padding to perform radiz-2 fft
%
exp_2=ceil(l/logl0(2) * loglO(np));
nz = 2"(exp_2);
nzh = nz/2;
band=n-(tau2-taul+l);
fmt_avg=zeros (l,n) ,-
num_records=floor((length(vd)-no)/no);
for ns=l:+no:no*num records

58
ne=ns+np-l;
vd_gate(1:np)=vd(ns:ne);
%
% Window data using Hamming window
%
window=hatraning(np);
window=window';
vd_w=window.*vd_gate;
%
% Add padding
%
pvd=zeros(l,n2);
pvd(1:np)=vd_w(1:np);
%
% Remove the average value and normalize the data
% to have unity rms value.
%
avg=mean(pvd(1:np));
pvd(l:np)=pvd(l:np)-avg;
temp=pvd(1:np).*2;
rras=mean(temp);
rms=rms'*'0.5;
pvd(l:np) =(l/rms)*pvd(l:np);
clear temp;
%
% Compute the FFT of padded voice data.
%
PVD=fft(pvd);
%
% Find the real of the complex cepstrum
%
h = PVD;
logh = log(abs(h)+0.01);
% an offset value of 0.01 was added to prevent
% the log of zero,
cep = real(ifft(logh,nz));
%
% Compute formant frequencies and
% frequency domain response of vocal tract model
% First Formant {200-1200 Hz}
% Second Formant {500-3000 Hz}
%
%
cepstrum(nzh+1:nz)=cep(1:nzh);
cepstrum(1:nzh)=cep(nzh+l:nz);
window=hamming(ws);
window=window';
ht=cepstrum(nzh-ws/2+l:nzh+ws/2);
ht_w=window.*ht;
ht_p=zeros(l,nz);
ht_jp {1: ws) =ht_w (1: ws) ;
HS=fft(ht_p);
HS_ABS=abs (HS (1 mzh)) ;
%
% Normalize data to meet scaling and
% offset criteria.
%
scale=(high-low)/(max(HS_ABS)-min(HS_ABS));

59
offset={max(HS_ABS)*low - min(HS_ABS)*high)/{max(HS_ABS) -

min{HS_ABS));
X_adj =scale*HS_ABS+offset;
cep(taul:tau2)=cep(taul:tau2)+abs(min(cep(taul:tau2)));
X_adj =[X_adj(1:band) cep(taul:tau2)];
if (index >= 1) & (index <= N)

fmt_avg = fmt_avg+X_adj;
end

end
if num_records == 0

fprintf('\nNo training data was created for file ');
fprintf(fn_ext); fprintf('\n\n');

elseif (index >= 1) & (index <= N)
fmt_avg=fmt_avg/num_records;
if ncomp > 0

fmt_avg(n-ncomp+l:n) = check(vd'),-
end;
fmt_avg(n+1:n+N) = zeros(1,N);
fmt_avg(n+index) = 1;
fid = fopen('train.nna', 'a');
fprintf(fid, ■%1.8f ', fmt_avg(1:n+N-1));
fprintf (fid, '%1.8f\n', fint_avg(n+N)) ;
fclose('all');

end

60

6. Testdat.m

% The following M-file creates a test.nna
% file used by NeuralWare to test the back-
% propagation network. All of the phonemes
% are represented.
% Written by MIDN l/c St. George
%
clear;
P=path;
dir_name=input('Enter directory containing voice data:
path(P,['c:\matlab\working2\', dir_name]);
if exist('test.nna')==2

delete test.nna;
fprintf('\nOverwriting file test.nna!\n\n');

' s •) ;

else
fprintf{'\nCreating file test.nna!\n\n');

end;
slices (1) =trial(iy' ;
slices (2) =trial(i')
slices (3) =trial(e') '
slices (4) =trial(ae" ;
slices (5) =trial(a') '
slices (6) =trial(er' ;
slices (7) =trial(loh' ;
slices (8) =trial(ow' ;
slices (9) =trial(oo' ;
slices [10)=trial ['u'] ;
slices (11 =trial 'ai);
slices [12 =trial 'oi);
slices [13 =trial 'au);
slices [14 =trial 'ei);
slices [15 =trial 'ax);
slices 16 =trial 'dh);
slices 17 =trial 'w'] t

slices 18 =trial '1'] 1

slices 19 =trial 'r') t

slices 20 =trial •y) 1

slices 21 =trial 'm') 1

slices 22 =trial 'n') 1

slices 23 =trial 'ng);
slices 24 =trial 'b') /
slices 25 =trial 'd') /
slices 26 =trial ■g') 1

slices 27 =trial ■p') t

slices 28 =trial 't') i
slices 29 =trial 'k') t

slices 30 =trial ■V) t

slices 31 =trial 'th);
slices 32 =trial 'z'. /
slices 33 =trial 'zh);
slices 34 =trial('f') f

slices(35 =trial('s'; /
slices(36] =trial< 'sh);
slices 37] =trial(•h') 1

61
slices(38)=trial('dzh');
slices(39)=trial('tsh');
slices(40)=trial('null');
fprintf('\n%d records written to test.dat\n\n', sum(slices));
save slices;
path(P);
clear;

62

7. Trial.m

function num_records=trial(fn)
% test.m
% Read voice data created by Sound Blaster's 16 ADC
% Board. The sampling rate is 22.05KHZ and the
% data settings are: Mono, 16 bit signed integer
% words/sample. This program time slices the data
% and writes the average formant frequencies to
% a testing 'nna' file.
% Written by MIDN l/c St. George.
%
%
%
% Set parameters
% np = # of data points composing time slice for
% a sampling rate of 20.05 KHz
% no = # of overlaping data points in consecutive
% time slices
% ws = window size to be applied to cepstrum
% N = # of output elements
% n = # of input elements
% 'low' & 'high' pertain to the network ranges for
% input into the neural network
% nv = number of ensemble averages; nv = 1 produces
% no averaging
ncomp=0;
load vars;
np=vars(2); % 400 data points approximately equals 20 msec.
no=vars(3)
ws=vars(4)
N=vars(5);
n=vars(6);
low=vars(7);
high=vars(8);
nv=vars(9);
taul=vars(11);
tau2=vars(12);
%
% Read the Raw Return data.
%
fn_ext= [fn, ' .wav'] ,-
vd=wavread(fn_ext);
%
% Now Time Gate this Voice Signal
%
% Find minimum padding to perform radiz-2 fft
%
exp_2=ceil(l/logl0(2) * loglO(np));
nz = 2*{exp_2);
nzh = nz/2;
band=n-(tau2-taul+l);
num_records=floor((length(vd)-no)/no);
for ns=l:+no:no*num_records

ne=ns+np-l;

63
vd_gate{1:np)=vd(ns:ne);
%
% Window data using Hamming window
%
window=hamming(np);
window=window';
vd_w=window.*vd_gate;
%
% Add padding
%
pvd=zeros{1,nz);
pvd(1:np)=vd_w(1:np);
%
% Remove the average value and normalize the data
% to have \anity rms value.
%
avg=mean(pvd(1:np));
pvd(l:np)=pvd(l:np)-avg;
temp=pvd(1:np).*2;
rms=mean(temp);
rms=rms''0.5;
pvd(l:np)=(1/rms)*pvd(l:np);
clear temp;
%
% Compute the FFT of padded voice data.
%
PVD=fft(pvd);
%
% Find the real of the complex cepstrum
%
h = PVD;
logh = log(abs(h)+0.01);
% an offset value of 0.01 was added to prevent
% the log of zero.
cep = real(ifft(logh,nz));
%
% Compute formant frequencies and
% frequency domain response of vocal tract model
% First Formant {200-1200 Hz}
% Second Formant {500-3000 Hz}
%
%
cepstrum(nzh+l:nz)=cep(1:nzh);
cepstrum(l:nzh)=cep(nzh+l:nz);
window=hamming(ws);
window=window';
ht=cepstrum(nzh-ws/2+1:nzh+ws/2);
ht_w=window.*ht;
ht_p=zeros(l,nz);
ht_p(1:ws)=ht_w(1:ws);
HS=fft(ht_p);
HS_ABS=abs(HS(1:nzh));
%
% Normalize data to meet scaling and
% offset criteria.
%
scale=(high-low)/(max(HS_ABS)-min(HS_ABS));

64
offset=(max(HS_ABS)*low - min{HS_ABS)*high)/{max{HS_ABS) -

inin(HS_ABS)) ;
X_adj =scale*HS_ABS+offset;
cep(taul:tau2)=cep(taul:tau2)+abs(min(cep(taul:tau2))) ;
X_adj =[X_adj(1:band) cep(taul:tau2)];
%
%
ens(ceil(ns/no),1:n-ncomp)=X_adj(1:n-ncomp);
%
%

end;
if (num_records >= nv)

% vd=[vd' zeros(1,(nv-1)*no)];
for i=num_records+l:num_records+nv-l

ens(i,l:n-ncomp)=zeros(l,n-ncomp);
end;
for i=l:num_records

for j=l:nv-l
ens(i,l:n-ncomp)=ens(i,l:n-ncomp)+ens(i+j,l:n-ncomp);

end
if i <= num_records-nv+l

div=nv;
else

div=nuin_records-i+l;
end;
ens(i,l:n-ncomp)=ens(i,l:n-ncomp)/div;
% Correlation of matched function with all ensembles
% start=(i-1)*no+l;
% stop=start+(nv+1)*no-l;
% Correlation of matched function with single record
if ncomp > 0

start=(i-1)*no+l;
stop=start+np-l;
ens(i,n-ncomp+l:n)=check(vd(start:stop)');

end;
fid = fopen('test.nna', 'a');
fprintf(fid, '%1.8f ', ens(i,l:n-l)) ;
fprintf(fid, '%1.8f\n', ens(i,n));
fclose('all');

end
elseif (num_records < nv)

fprintf('\nToo few records exist in ');
fprintf(fn_ext);
fprintf(' to perform %d ensemble averages.\n' , nv) ;
if num_records == 0

fprintf('No test data was created for file ');
fprintf(fn_ext); fprintf('\n\n');

else
fprintf('Writing records to test file with %d ensemble

average(s)!\n\n', num_records);
for i=num_records+l:num_records+nv-l

ens(i, l:n-ncomp)=zeros(l,n-ncomp);
end;
nv=num_records;
% vd=[vd' zeros(1,(nv-l)*no)];
for i=num_records+l:num_records+nv-l

ens(i,l:n-ncomp)=zeros(l,n-ncomp);
end;

65
for i=l:num_records

for j=l:nv-l
ens(i,l:n-ncomp)=ens(i,l:n-ncomp)+ens(i+j,l:n-

ncomp);

end;

end;
if i <= num_records-nv+1

div=nv;
else

div=num_records-i+1;
end;
ens (i,l:n-ncoinp) =ens (i, l:n-ncomp) /nv;
% Correlation of matched function with all ensembles
% start=(i-l)*no+l;
% stop=start+(nv+l)*no-l;
% Correlation of matched function with single record
if ncomp > 0

start=(i-l)*no+l;
stop=start+np-l;
ens(i,n-ncorap+l:n)=check{vd{start:stop)');

end;
fid = fopen('test.nna', 'a');
fprintf(fid, •%1.8f ', ens(i,l:n-l));
fprintf(fid, '%1.8f\n', ens(i,n));
fclose('all');

end;
end

66

8. Class.m

function dv=class(N)
% N sets N-point filteming window (N >= 1)
% This M-File displays the clssification results
% for testing the network on a complete data bank
% of phonemes.
% Written by MIDN l/c St. George
%
load test.nnr;
[num_rec, out]=size(test);
load slices.mat
if (nargin==l) & (num_rec==sum(slices))

if (nargin==l) & N==l
[Y,I]=max{test');

elseif (nargin==l) & (N>1) & fix((N+1)/2)==(N+1)/2
window=hamming(N);
test_t=test';
sum=zeros(1,out);
pad=zeros(out,(N-l)/2);
test_j)= [pad test_t pad] ;
for i=0:num_rec-l

for n=l:N
sum=sum+window(n)*test_p{out*i+(n-

1)*out+l:out*i+n*out);
end
sum_t=sum';
if i==0

test_f=sum_t;
else

test_f=[test_f sum_t];
end;

end;
[Y,I]=max(test_f);

end;
num_phone=length(slices);
count=0;
for i=l:num_phone

corr_class=0;
for j=l:slices(i)

if I (coiont+j) ==i
corr_class=corr_class+l;

end;
end;
count=count+slices(i);
if slices(i) -= 0

id(i)=100*corr_class/slices(i);
else

id(i)=slices(i) ;
end;

end;
fprintf('\nClassification Results: \n\n');
fprintfClY = %3.1f\n', id(l));
fprintfCl = %3.1f\n', id(2)) ;
fprintfCE = %3.1f\n', id{3));

67
fprintf(AE = %3.1f\n' , id(4));
fprintf{ A = %3.1f\n' , id{5));
fprintf{ ER = %3.1f\n' , id(6));
fprintf(UH = %3.1f\n' , id(7));
fprintf(OW = %3.1f\n' , id(8));
fprintf(00 = %3.1f\n' , id(9));
fprintf(U = %3.1f\n' , id(lO))
fprintf{ AI = %3.1f\n' id(ll))
fprintf(01 = %3.1f\n' id{12))
fprintf(AU = %3.1f\n' id(13))
fprintf(El = %3.1f\n' id(14))
fprintf(AX = %3.1f\n' id(15))
fprintf{ DH = %3.1f\n' id(16))
fprintf(W = %3.1f\n' id{17))
fprintf(L = %3.1f\n' id{18))
fprintf(R = %3.1f\n' id(19))
fprintf(y = %3.1f\n' id(20))
fprintf(M = %3.1f\n' id(21))
fprintf{ N = %3.1f\n' id(22))
fprintf(NG = %3.1f\n' id(23))
fprintf(B = %3.1f\n' id(24))
fprintf(D = %3.1f\n' id{25))
fprintf(G = %3.1f\n' id{26))
fprintf(P = %3.1f\n' id{27))
fprintf(T = %3.1f\n' id(28))
fprintf{ K = %3.1f\n' id(29))
fprintf(V = %3.1f\n' id(30))
fprintf(TH = %3.1f\n' id(31))
fprintf(Z = %3.1f\n' id(32))
fprintf(ZH = %3.1f\n' id(33))
fprintf(F = %3.1f\n' id(34))
fprintf(S = %3.1f\n' id(35))
fprintf(SH = %3.1f\n' id(36))
fprintf(H = %3.1f\n' id{37))
fprintf(TSH = %3.1f\n' id(39))
fprintf(null = %3.1f\n' id{40)) ,
fprintf(\n\n •) '

elseif (nargin= ==1)
fprintf(\nThe number of records contained in test.nnr\n');
fprintf(does not match the number of time slices\n');
fprintf(recorded by testdat.m\n\n');

end;

68

9. Voice t.m

% voice_t.m
% Read voice data created by Sound Blaster's 16 bit ADC
% Board. The sampling rate is 22.05KHZ and the
% data settings are: Mono, 16 bit signed integer words/sample.
% This program time slices the data and writes the average
% formant frequencies to either a training or testing 'nna'
% file. An index of '0' signifies a testing file.
% An index >= 1 signifies a training data file in which the
% corresponding output element of the neural network(specified
% by the numerical value assigned the variable index) is
% driven high.
% Written by MIDN 1/c St. George.
%
%
clear;
%
% Set parameters
% np = # of data points composing time slice for a sampling rate of
20.05 KHz
% no = # of overlaping data points in consecutive time slices
% ws = window size to be applied to cepstrum
% N = # of output elements
% n = # of input elements
% 'low' & 'high' pertain to the network ranges for input into the neural
network
% nv = number of ensemble averages; nv = l produces no averaging
load vars; % sampling rate in kHz.
fsamp=vars(1);
np=vars(2)
no=vars(3)
ws=vars(4)
N=vars(5);
n=vars(6);
low=vars(7);
high=vars(8);
nv=vars(9);
taul=vars(11);
tau2=vars(12);
%
% Read the Raw Return data.
%
fn=input('Input the File Name(without extension): ','s');
index=input('Input phoneme index(Enter 0 to produce test data): ');
fn_ext=[fn, '.wav'];
vd=wavread(fn_ext);
%
%
% String arrays for the plots
%
c=fix(clock);
tpl=sprintf(•, USNA %d/%d/%d %d:%d',c(1),c(2),c(3),c(4),c(5));
delx=int2str(fix(1000/fsamp)); % delx in micro sec.
%

69

%
% Now Show vd array
%
% Now Time Gate this Voice Signal
%
band=n-(tau2-taul+l);
fmt_avg=zeros(l,n);
num_records=floor((length(vd)-no)/no);
for ns=l:+no:no*num_records

%
ne=ns+np-l;
vd_gate(1:np)=vd(ns:ne);
%
% Window data using Hamming window
%
window=hamming(np);
window=window';
vd_w=window.*vd_gate;
%
%
% Find minimum padding to perform radix-2 fft
%
exp_2=ceil{l/logl0(2) * loglO(np));
nz = 2*{exp_2);
nzh = nz/2;
%
% Add padding
%
pvd=zeros{1,nz);
pvd(l:np)=vd_w(l:np);
%
%
% Now remove the average value and normalize the data to have
% unity rms value.
%
avg=mean(pvd(1:np));
pvd(1:np)=pvd(1:np)-avg;
temp=pvd (1: np) . '"2 ;
rms=mean(temp) ;
rms=rms'^0.5;
pvd(l:np)=(l/rms)*pvd(l:np);
clear temp;
%
%
% Now coir^jute the FFT of padded voice data.
%
delf=int2str(fix(le6*fsait5)/nz)) ; % delx in mHz.
PVD=fft(pvd);
%
%
% Find the real of the complex cepstrum
%
h = PVD;
logh = log(abs(h)+0.01);
% an offset value of 0.01 was added to prevent the log of zero
cep = real(ifft(logh,nz));
%
%

70
% Show formant frequencies and
% frequency domain response of vocal tract model
% First Formant {200-1200 Hz}
% Second Formant {500-3000 Hz}
%
%
cepstrum(nzh+l:nz)=cep{l:nzh);
cepstrum(l:nzh) =cep (nzh+l:nz) ,-
window=hamming{ws);
window=window';
ht=cepstrum(nzh-ws/2+l:nzh+ws/2);
ht_w=window. *ht ,•
ht_p=zeros (l,nz) ;
ht_p (1:WS)=ht_W{1:WS) ;
HS=fft(ht_p);
HS_ABS=abs(HS(1:nzh));
%
% Normalize data to meet scaling and offset criteria.
%
scale=(high-low)/(max(HS_ABS)-min(HS_ABS));
offset=(max(HS_ABS)*low - min(HS_ABS)*high)/(max(HS_ABS) -

min(HS_ABS));
X_adj =scale*HS_ABS+offset;
X_adj =[X_adj(l:band) cep(taul:tau2)];
fmt_avg = fmt_avg+X_adj;
%
if index == 0

ens(ceil(ns/no),l:n)=X_adj(l:n);
end

end
if (index == 0)

if exist('test.nna')==2
delete test.nna;
fprintf('\nOverwriting file test.nna!\n');

else
fprintf('\nCreating file test.nna!\n');

end;
elseif (index >= 1) & (index <= N)

if exist('train.nna')==2
fprintf('\nAppending file train.nna!\n');

else
fprintf('\nCreating file train.nnal\n');

end;
end;
nr=num_records-(nv-1);
if (index ==0) & (nr >= 1)

for i=l:nr
for j=l:nv-l

ens (i, l:n) =ens (i, 1 :n) +ens (i+j , l:n) ;
end
ens (i, 1 :n) =ens (i, 1 :n) /nv;
fid = fopen('test.nna', 'a');
fprintf(fid, '%1.8f ', ens(i,l:n-l));
fprintf(fid, '%1.8f\n', ens(i,n));
fclose('all');

end
elseif (index == 0) & (nr < 1)

fprintf('\nToo few records exist in ');

71
fprintf(fn_ext);
fprintf(' to average %d ensembles!\n',nv);
fprintf('Writing records to test file without ensemble

averaging\n\n');
for i=l:num_records

fid = fopen('test.nna', 'a');
fprintf(fid, '%1.8f ', ens(i,l:n-l));
fprintf(fid, '%1.8f\n', ens(i,n));
fclose('all');

end
end
if (index >= 1) & (index <= N)

fmt_avg=fmt_avg/num_records;
fmt_avg(n+1:n+N) = zeros(1,N);
fmt_avg(n+index) = 1;
fid = fopen('train.nna', 'a');
fprintf(fid, '%1.8f ', fmt_avg(1:n+N-1));
fprintf(fid, •%1.8f\n', fmt_avg(n+N));
fprintf('\n%d record(s) copied to output file\n\n', 1);
fclose('all');

elseif index == 0
fprintf('\n%d record(s) copied to output file\n\n', nr);

end

72

10. Display.m

fionction dv=display(npt)
% N sets N-point filterning window (N >= 1)
% This M-File display the results taken from the
% output buffer/layer of the neural network. A
% statistical analysis is applied to consecutive
% records to account for ambiguities that may
% arise.
% Written by MIDN 1/c St. George
%
load vars;
fsamp=vars(l); % sampling rate in kHz.
T=l/fsamp; % T in msec.
np=vars (2) ,-
no=vars(3);
% the number of records comprising a 250 msec time interval
quart_sec=round(2*(250/T/np)-1) ;
%
load test.nnr;
[rec_num, out]=size(test);
if npt/2==fix(npt/2)

N=npt-1;
else

N=npt;
end;
if N==l

[Y,I]=raax(test');
elseif (N>1) & fix((N+1)/2)==(N+1)/2

window=hamming(N);
test_t=test';
sum=zeros(1,out);
pad=zeros(out,(N-l)/2);
test_p=[pad test_t pad];
for i = 0:rec_num-1

for n=l:N
sum=sum+window(n)*test_p (out*i+(n-

1)*out+l:out*i+n*out);
end
sum_t=sum';
if i==0

test_f=sum_t;
else

test_f=[test_f sum_t];
end

end
[Y, I] =max (test_f) ;

end
%
fprintf('\nThe phonemes/indexes identified were: \n\n');
k=l;
while (k <= length(I))

if length(k:length(1)) < quart_sec
quart_sec = length(I)-k+1;

end;

73
fprintf {'%1.2f sec: ', 0.25*f loor {k/round(2* (250/T/np)-1))+0.25) ,■
fprintf (' %2. Of ', I(k:k+quart_sec-l));
fprintf('\n');
k=k+quart_sec;

end;
fprintf CXn') ;

74

11. Condense.m

fimction dv=condense(npt)
% npt sets N-point filteming window (N >= 1)
%
% The output is CONDENSED and any repetitive
% or redundant phonemes are removed.
% Written by MIDN 1/c St. George
%
load vars;
fsamp=vars(1); % sampling rate in kHz.
T=l/fsamp; % T in msec.
np=vars(2);
no=vars(3);
% the number of records comprising a 250 msec time interval
quart_sec=round(2*(250/T/np)-1);
%
load test.nnr;
[rec_num, out]=size(test);
if npt/2==fix(npt/2)

N=npt-1;
else

N=npt;
end;
if N==l

[y,I]=max(test');
elseif (N>1) & fix((N+1)/2)==(N+1)/2

window=hamming(N);
test_t=test';
sum= zeros(1,out);
pad=zeros(out,(N-l)/2);
test_p=[pad test_t pad];
for i=0:rec_num-1

for n=l:N
sum=sum+window(n)*test_p(out*i+(n-

1)*out+l:out*i+n*out);
end
sum_t=sum';
if i==0

test_f=sum_t;
else

test_f=[test_f sum_t];
end

end
[Y,I]=max(test_f);

end;
%
cond_out=I(1);
d=l;
for i=2:rec_num;

if cond_out(i-d)~=I(i)
cond_out=[cond_out I(i)] ;

else
d=d+l;

end

75

end
clear I;
I=cond_out;
fprintf('\nThe phonemes/indexes identified were: \n\n');
k=l;
while (k <= length(I))

if length(k:length(I)) < quart_sec
quart_sec = lengthd)-k+l.-

endj-
fprintf {'%2 . Of ', I(k:k+quart_sec-l));
fprintf CXn') ;
k=k+quart_sec;

end;
fprintf CXn') ;

